3.2.14 \(\int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \, dx\) [114]

3.2.14.1 Optimal result
3.2.14.2 Mathematica [C] (verified)
3.2.14.3 Rubi [A] (verified)
3.2.14.4 Maple [B] (verified)
3.2.14.5 Fricas [A] (verification not implemented)
3.2.14.6 Sympy [F(-1)]
3.2.14.7 Maxima [F]
3.2.14.8 Giac [B] (verification not implemented)
3.2.14.9 Mupad [F(-1)]

3.2.14.1 Optimal result

Integrand size = 38, antiderivative size = 180 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \, dx=\frac {3 (5 A-3 B) \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{32 \sqrt {2} a c^{5/2} f}+\frac {3 (5 A-3 B) \cos (e+f x)}{32 a c f (c-c \sin (e+f x))^{3/2}}+\frac {(A+B) \sec (e+f x)}{4 a c f (c-c \sin (e+f x))^{3/2}}-\frac {(5 A-3 B) \sec (e+f x)}{8 a c^2 f \sqrt {c-c \sin (e+f x)}} \]

output
3/32*(5*A-3*B)*cos(f*x+e)/a/c/f/(c-c*sin(f*x+e))^(3/2)+1/4*(A+B)*sec(f*x+e 
)/a/c/f/(c-c*sin(f*x+e))^(3/2)+3/64*(5*A-3*B)*arctanh(1/2*cos(f*x+e)*c^(1/ 
2)*2^(1/2)/(c-c*sin(f*x+e))^(1/2))/a/c^(5/2)/f*2^(1/2)-1/8*(5*A-3*B)*sec(f 
*x+e)/a/c^2/f/(c-c*sin(f*x+e))^(1/2)
 
3.2.14.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.04 (sec) , antiderivative size = 404, normalized size of antiderivative = 2.24 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (8 (-A+B) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^4+4 (A+B) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+(7 A-B) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )-(3+3 i) \sqrt [4]{-1} (5 A-3 B) \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^4 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+8 (A+B) \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+2 (7 A-B) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )}{32 a f (1+\sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \]

input
Integrate[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])*(c - c*Sin[e + f*x])^ 
(5/2)),x]
 
output
((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2 
])*(8*(-A + B)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^4 + 4*(A + B)*(Cos[(e 
 + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]) + (7* 
A - B)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(Cos[(e + f*x)/2] + Sin[(e 
+ f*x)/2]) - (3 + 3*I)*(-1)^(1/4)*(5*A - 3*B)*ArcTan[(1/2 + I/2)*(-1)^(1/4 
)*(1 + Tan[(e + f*x)/4])]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^4*(Cos[(e 
+ f*x)/2] + Sin[(e + f*x)/2]) + 8*(A + B)*Sin[(e + f*x)/2]*(Cos[(e + f*x)/ 
2] + Sin[(e + f*x)/2]) + 2*(7*A - B)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]) 
^2*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])))/(32*a*f*(1 + S 
in[e + f*x])*(c - c*Sin[e + f*x])^(5/2))
 
3.2.14.3 Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.91, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {3042, 3446, 3042, 3338, 3042, 3166, 3042, 3129, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a) (c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a) (c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3446

\(\displaystyle \frac {\int \frac {\sec ^2(e+f x) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{3/2}}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A+B \sin (e+f x)}{\cos (e+f x)^2 (c-c \sin (e+f x))^{3/2}}dx}{a c}\)

\(\Big \downarrow \) 3338

\(\displaystyle \frac {\frac {(5 A-3 B) \int \frac {\sec ^2(e+f x)}{\sqrt {c-c \sin (e+f x)}}dx}{8 c}+\frac {(A+B) \sec (e+f x)}{4 f (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(5 A-3 B) \int \frac {1}{\cos (e+f x)^2 \sqrt {c-c \sin (e+f x)}}dx}{8 c}+\frac {(A+B) \sec (e+f x)}{4 f (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3166

\(\displaystyle \frac {\frac {(5 A-3 B) \left (\frac {3}{2} c \int \frac {1}{(c-c \sin (e+f x))^{3/2}}dx-\frac {\sec (e+f x)}{f \sqrt {c-c \sin (e+f x)}}\right )}{8 c}+\frac {(A+B) \sec (e+f x)}{4 f (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(5 A-3 B) \left (\frac {3}{2} c \int \frac {1}{(c-c \sin (e+f x))^{3/2}}dx-\frac {\sec (e+f x)}{f \sqrt {c-c \sin (e+f x)}}\right )}{8 c}+\frac {(A+B) \sec (e+f x)}{4 f (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3129

\(\displaystyle \frac {\frac {(5 A-3 B) \left (\frac {3}{2} c \left (\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{4 c}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}\right )-\frac {\sec (e+f x)}{f \sqrt {c-c \sin (e+f x)}}\right )}{8 c}+\frac {(A+B) \sec (e+f x)}{4 f (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(5 A-3 B) \left (\frac {3}{2} c \left (\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{4 c}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}\right )-\frac {\sec (e+f x)}{f \sqrt {c-c \sin (e+f x)}}\right )}{8 c}+\frac {(A+B) \sec (e+f x)}{4 f (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {\frac {(5 A-3 B) \left (\frac {3}{2} c \left (\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {1}{2 c-\frac {c^2 \cos ^2(e+f x)}{c-c \sin (e+f x)}}d\left (-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{2 c f}\right )-\frac {\sec (e+f x)}{f \sqrt {c-c \sin (e+f x)}}\right )}{8 c}+\frac {(A+B) \sec (e+f x)}{4 f (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {(5 A-3 B) \left (\frac {3}{2} c \left (\frac {\text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} c^{3/2} f}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}\right )-\frac {\sec (e+f x)}{f \sqrt {c-c \sin (e+f x)}}\right )}{8 c}+\frac {(A+B) \sec (e+f x)}{4 f (c-c \sin (e+f x))^{3/2}}}{a c}\)

input
Int[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])*(c - c*Sin[e + f*x])^(5/2)) 
,x]
 
output
(((A + B)*Sec[e + f*x])/(4*f*(c - c*Sin[e + f*x])^(3/2)) + ((5*A - 3*B)*(- 
(Sec[e + f*x]/(f*Sqrt[c - c*Sin[e + f*x]])) + (3*c*(ArcTanh[(Sqrt[c]*Cos[e 
 + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])]/(2*Sqrt[2]*c^(3/2)*f) + Cos[e 
 + f*x]/(2*f*(c - c*Sin[e + f*x])^(3/2))))/2))/(8*c))/(a*c)
 

3.2.14.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3129
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c 
+ d*x]*((a + b*Sin[c + d*x])^n/(a*d*(2*n + 1))), x] + Simp[(n + 1)/(a*(2*n 
+ 1))   Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] 
&& EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3166
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_. 
)*(x_)]], x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(a*f*g*(p + 1)*S 
qrt[a + b*Sin[e + f*x]])), x] + Simp[a*((2*p + 1)/(2*g^2*(p + 1)))   Int[(g 
*Cos[e + f*x])^(p + 2)/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e 
, f, g}, x] && EqQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 3338
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - 
 a*d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p + 1) 
)), x] + Simp[(a*d*m + b*c*(m + p + 1))/(a*b*(2*m + p + 1))   Int[(g*Cos[e 
+ f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f, 
g, m, p}, x] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1] || ILtQ[Simplify[m + p], 0 
]) && NeQ[2*m + p + 1, 0]
 

rule 3446
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B*Sin 
[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a* 
d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] 
&& GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
3.2.14.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(349\) vs. \(2(157)=314\).

Time = 1.01 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.94

method result size
default \(-\frac {\left (-15 A \sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}+30 A \,c^{\frac {5}{2}}+9 B \sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}-18 B \,c^{\frac {5}{2}}\right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \left (-30 A \sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}+40 A \,c^{\frac {5}{2}}+18 B \sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}-24 B \,c^{\frac {5}{2}}\right )+30 A \sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}-24 A \,c^{\frac {5}{2}}-18 B \sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}+40 B \,c^{\frac {5}{2}}}{64 c^{\frac {9}{2}} a \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(350\)

input
int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x,method=_RET 
URNVERBOSE)
 
output
-1/64/c^(9/2)/a*((-15*A*(c+c*sin(f*x+e))^(1/2)*2^(1/2)*arctanh(1/2*(c+c*si 
n(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*c^2+30*A*c^(5/2)+9*B*(c+c*sin(f*x+e))^(1/ 
2)*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*c^2-18*B*c^ 
(5/2))*cos(f*x+e)^2+sin(f*x+e)*(-30*A*(c+c*sin(f*x+e))^(1/2)*2^(1/2)*arcta 
nh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*c^2+40*A*c^(5/2)+18*B*(c+c* 
sin(f*x+e))^(1/2)*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/ 
2))*c^2-24*B*c^(5/2))+30*A*(c+c*sin(f*x+e))^(1/2)*2^(1/2)*arctanh(1/2*(c+c 
*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*c^2-24*A*c^(5/2)-18*B*(c+c*sin(f*x+e)) 
^(1/2)*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*c^2+40* 
B*c^(5/2))/(sin(f*x+e)-1)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f
 
3.2.14.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.57 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {3 \, \sqrt {2} {\left ({\left (5 \, A - 3 \, B\right )} \cos \left (f x + e\right )^{3} + 2 \, {\left (5 \, A - 3 \, B\right )} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, {\left (5 \, A - 3 \, B\right )} \cos \left (f x + e\right )\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} - 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) + 4 \, {\left (3 \, {\left (5 \, A - 3 \, B\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left (5 \, A - 3 \, B\right )} \sin \left (f x + e\right ) - 12 \, A + 20 \, B\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{128 \, {\left (a c^{3} f \cos \left (f x + e\right )^{3} + 2 \, a c^{3} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, a c^{3} f \cos \left (f x + e\right )\right )}} \]

input
integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algo 
rithm="fricas")
 
output
-1/128*(3*sqrt(2)*((5*A - 3*B)*cos(f*x + e)^3 + 2*(5*A - 3*B)*cos(f*x + e) 
*sin(f*x + e) - 2*(5*A - 3*B)*cos(f*x + e))*sqrt(c)*log(-(c*cos(f*x + e)^2 
 - 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*sqrt(c)*(cos(f*x + e) + sin(f*x + e 
) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f*x + e) + 2*c)/(co 
s(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) + 4*(3 
*(5*A - 3*B)*cos(f*x + e)^2 + 4*(5*A - 3*B)*sin(f*x + e) - 12*A + 20*B)*sq 
rt(-c*sin(f*x + e) + c))/(a*c^3*f*cos(f*x + e)^3 + 2*a*c^3*f*cos(f*x + e)* 
sin(f*x + e) - 2*a*c^3*f*cos(f*x + e))
 
3.2.14.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))**(5/2),x)
 
output
Timed out
 
3.2.14.7 Maxima [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {B \sin \left (f x + e\right ) + A}{{\left (a \sin \left (f x + e\right ) + a\right )} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algo 
rithm="maxima")
 
output
integrate((B*sin(f*x + e) + A)/((a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c) 
^(5/2)), x)
 
3.2.14.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 504 vs. \(2 (157) = 314\).

Time = 0.62 (sec) , antiderivative size = 504, normalized size of antiderivative = 2.80 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \, dx=\frac {\frac {12 \, \sqrt {2} {\left (5 \, A \sqrt {c} - 3 \, B \sqrt {c}\right )} \log \left (-\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1}\right )}{a c^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\sqrt {2} {\left (A \sqrt {c} + B \sqrt {c} - \frac {16 \, A \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {90 \, A \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} - \frac {54 \, B \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}{a c^{3} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {128 \, \sqrt {2} {\left (A \sqrt {c} - B \sqrt {c}\right )}}{a c^{3} {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\frac {16 \, \sqrt {2} A a c^{\frac {7}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {\sqrt {2} A a c^{\frac {7}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} - \frac {\sqrt {2} B a c^{\frac {7}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}}{a^{2} c^{6}}}{512 \, f} \]

input
integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algo 
rithm="giac")
 
output
1/512*(12*sqrt(2)*(5*A*sqrt(c) - 3*B*sqrt(c))*log(-(cos(-1/4*pi + 1/2*f*x 
+ 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1))/(a*c^3*sgn(sin(-1/4*pi 
 + 1/2*f*x + 1/2*e))) - sqrt(2)*(A*sqrt(c) + B*sqrt(c) - 16*A*sqrt(c)*(cos 
(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 90 
*A*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 
 1/2*e) + 1)^2 - 54*B*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos( 
-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2/ 
(a*c^3*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 
1/2*e))) + 128*sqrt(2)*(A*sqrt(c) - B*sqrt(c))/(a*c^3*((cos(-1/4*pi + 1/2* 
f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 1)*sgn(sin(-1/4*p 
i + 1/2*f*x + 1/2*e))) - (16*sqrt(2)*A*a*c^(7/2)*(cos(-1/4*pi + 1/2*f*x + 
1/2*e) - 1)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1 
/2*e) + 1) - sqrt(2)*A*a*c^(7/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sg 
n(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 - 
 sqrt(2)*B*a*c^(7/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*p 
i + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2)/(a^2*c^6))/f
 
3.2.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {A+B\,\sin \left (e+f\,x\right )}{\left (a+a\,\sin \left (e+f\,x\right )\right )\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

input
int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))*(c - c*sin(e + f*x))^(5/2)) 
,x)
 
output
int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))*(c - c*sin(e + f*x))^(5/2)) 
, x)